Заговоры. Амулеты и талисманы. Привороты. Нумерология

Понятие о кристалле. Презентация «Ужасно интересно всё то, что не известно!» Удивительный мир кристаллов Названия кристаллов

Муниципальное Бюджетное общеобразовательное учреждение

Одинцовская гимназия № 4

Исследовательская работа

Кристаллы

Работу выполнила:

Минасова Виктория

Ученица 2-го «В» класса

Руководитель:

Манухова Н.Е

Учитель нач.классов

Оглавление:

Введение

1. Теоретическая часть.

1.1 Что такое кристаллы?

1.2 Виды и типы кристаллов.

1.3 Какие формы бывают у кристаллов?

1.4 Строение кристаллов

1.5 Кристаллы в жизни человека.

1.6 Интересные факты о кристаллах

1.7 Кристаллы - драгоценные камни

Вывод

Список литературы

Приложения

2.Экспериментальная часть.

2.1. Выращивание кристалла из химического состава

2.2.Вращивание кристалла из сахарного сиропа

Введение:

Как-то раз, когда мне было 5 лет мы с мамой растили кристалл. Тогда я не понимала, насколько это интересно наблюдать за ними, следить за их ростом и замечать, как они образуют различные формы. Я вспомнила об этом, когда нам нужно было выбрать тему своей исследовательской работы.

Собирая информацию для проекта, мы узнали, что можно вырастить кристаллы не только из готовых химических составов, но и из соли, медного купороса и сахара. В теме этого проекта мы попробуем вырастить кристаллы из готового химического состава и сахара.

Цель моего проекта : узнать и рассказать одноклассникам интересные сведения о кристаллах, об их форме, о том, как появляются кристаллы.

Задачи:

1.Провести анализ источников по теме проекта;

2.Узнать о том, как появляются кристаллы;

3.Выяснить, какие бывают кристаллы;

4.Вырастить кристаллы в домашних условиях;

5.Создать презентацию по теме проекта.

1.Теоретическая часть.

1.1 Что такое кристаллы?

Само слово кристалл произошло от древнегреческого «krystallos», что значит «лёд». Айсберг – огромная глыба льда. Твердое вещество, молекулы которого организованы в четкой повторяющейся схеме. Благодаря такой повторяющейся структуре кристаллы сами могут принимать странные и интересные формы. Иногда их совершенство наводит на мысль, что над ними потрудился профессиональный огранщик

Кристалл - это твердое состояние вещества. Он имеет определенную форму и определенное количество граней вследствие расположения своих атомов. Все кристаллы одного вещества имеют одинаковую форму, хоть и могут отличаться размерами.

В природе существуют сотни веществ, образующих кристаллы. Вода - одно из самых распространенных из них. Замерзающая вода превращается в кристаллы льда или снежинки. Минеральные кристаллы тоже образуются в ходе определенных породообразующих процессов. Огромные количества горячих и расплавленных горных пород глубоко под землей в действительности представляют из себя растворы минералов. Когда массы этих жидких или расплавленных горных пород выталкиваются к поверхности земли, они начинают остывать. Они охлаждаются очень медленно. Минералы превращаются в кристаллы, когда переходят из состояния горячей жидкости в холодную твердую форму. Например, горный гранит содержит кристаллы таких минералов, как кварц, полевой шпат и слюда. Миллионы лет тому назад гранит был расплавленной массой минералов в жидком состоянии.

В настоящее время в земной коре имеются массы расплавленных горных пород, которые медленно охлаждаются и образуют кристаллы различных видов. Кристаллы могут иметь всевозможные формы. Все известные в мире кристаллы могут быть разделены на 32 вида, которые в свою очередь могут быть сгруппированы в шесть видов. Кристаллы могут иметь и разные размеры. Некоторые минералы образуют кристаллы, которые разглядеть можно только с помощью микроскопа. Другие же образуют кристаллы, вес которых составляет несколько сотен фунтов.(рис1)

1.2 Виды и типы кристаллов

Различают несколько типов кристаллов:

1) ионные

2) атомные

3) металлические

4) молекулярные

Идеальная форма кристалла имеет вид многогранника. Такой кристалл ограничен плоскими гранями, прямыми ребрами и обладает симметрией. В кристаллах можно найти различные элементы симметрии. Кристаллические тела делятся на монокристаллы и поликристаллы.

Виды кристаллов

Монокристаллы Поликристаллы

Монокристалл представляет собой монолит с единой ненарушенной кристаллической решеткой. Природные монокристаллы больших размеров встречаются очень редко.

Монокристаллами являются кварц, алмаз, рубин и многие другие драгоценные камни.

Большинство кристаллических тел являются поликристаллическими, то есть состоят из множества мелких кристалликов, иногда видных только при сильном увеличении.

Поликристаллами являются все металлы

Природные кристаллы.

Раньше кристаллы считали редкостью. Конечно, великаны многогранники встречаются не часто. Но кристаллы меньших размеров окружают нас повсюду. В граните даже без лупы можно легко различить пластинки слюды, кристаллики кварца и полевого шпата. Песок состоит из окатанных кристаллов кварца, а мрамор – из кристаллов кальцита. Почти все минералы на земле состоят из кристаллов. Установлено, что все металлы и почти все камни – кристаллы. На земле нет некристаллических металлов.

Снежинки - это тоже кристаллы. Составленные из тонких ледяных иголочек, они похожи на звездочки. У этих звездочек всегда шесть лучей. Все они разные. Один ученый сделал 2500 фотоснимков снежинок, и все они отличались. Узоры на окнах зимой - это тоже кристаллы воды. Толстый лед на реке составлен из шестиугольных столбиков, похожих на карандаши. И иголочки снежинок, и «карандашики» - это кристаллы замёршей воды. Из кристаллов состоят очень многие другие тела: в глине, каучуке, саже, костях, волосах, иглах дикобраза, клыках мамонта, в волокнах шерсти, шелка, целлюлозы обнаружено кристаллическое строение.

Природные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище.

С давних пор с кристаллами были связаны суеверия; как амулеты, они должны были не только ограждать своих владельцев от злых духов, но и наделять их сверхъестественными способностями.

Позднее, когда те же самые минералы стали разрезать и полировать, как драгоценные камни, многие суеверия сохранились в талисман ах «на счастье» и «своих камнях», соответствующих месяцу рождения.

В природе кристаллы образуются тремя путями: из расплава, из раствора и из паров.

Примером кристаллизации из расплава является образование льда из воды.

Примером образования кристаллов из растворов, могут служить сотни миллионов тонн соли, выпавшей из морской воды.

Примером образования кристаллов из пара и газа являются снежинки, иней. Воздух, содержащий влагу, охлаждается, и прямо из него вырастают снежинки той или иной формы.

Многие кристаллы, что удивительно, являются продуктами жизнедеятельности организмов. Это, например, жемчуг, перламутр.

Рифы и целые острова в океанах сложены из кристалликов углекислого кальция, составляющих основу скелета беспозвоночных животных - коралловых полипов. (рис 2-4)

Искусственные кристаллы.

Для многих отраслей техники, выполнения научных исследований требуются кристаллы очень высокой химической чистоты с совершенной кристаллической структурой.

Кристаллы, встречающиеся в природе, этим требованиям не удовлетворяют, так как они растут в условиях, весьма далеких от идеальных

Кроме того, потребность во многих кристаллах превышает запасы в природных месторождениях.

Из более чем 3000 минералов, существующих в природе, искусственно удалось получить уже больше половины. (рис 5-7)

1.3 Формы кристаллов

Форма кристаллов следует топологии молекул, из которых они состоят так, что каждая новая молекула может закрепиться, как в конструкторе заданной формы, по направлениям межатомных связей.

Но то, сколько молекул закрепится и с какой стороны и грани, то, насколько непрерывно будет нарастать конструкция кристалла, какие молекулы примесей и сколько окажется включенным в кристалл или, при невозможности образовать связи с его конструкцией, внедрятся в него как кристалл другого типа, - все это зависит от внешних условий формирования кристаллов, приводя к невероятному разнообразию форм даже для "чистого" вещества (содержащего молекулы одного вида). Наибольшее влияние оказывают температура и химический состав окружающей среды.

В каждых данных условиях формируется и остается неизменным ("выживает") то, что соответствует этим условиям, а в противном случае претерпевает изменения.

Наиболее знакомо всем и постоянно наблюдается разнообразие кристаллов воды: Снежинки, Ледяные узоры, Кристаллы воды.

Повсюду разнообразные формы кристаллов окружающих веществ, видимые и микроскопические, непосредственно определяющие нашу жизнь и вообще делающие возможной жизнь на Земле. Ведь органические вещества и даже био -формы - так же определены в своей основе направленностью межатомных связей в молекулах. (рис.8)

1.4 Строение кристаллов

Разнообразие кристаллов по форме очень велико .

В кристаллах все атомы расположены так, чтобы из них образовывалась трехмерно-периодическая укладка. Таким образом, на поверхности мы видим кристаллическую решетку. (рис.9)

Кристаллы могут иметь от четырех до нескольких сотен граней. Но при этом они обладают замечательным свойством - какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определенными углами. Углы между соответственными гранями всегда одинаковы.

Кристаллы каменной соли, например, могут иметь форму куба, параллелепипеда, призмы или тела более сложной формы, но всегда их грани пересекаются под прямыми углами. Грани кварца имеют форму неправильных шестиугольников, но углы между гранями всегда одни и те же - 120°.

Закон постоянства углов, открытый в 1669 г. датчанином Николаем Стено, является важнейшим законом науки о кристаллах - кристаллографии.

Измерение углов между гранями кристаллов имеет очень большое практическое значение, так-как по результатам этих измерений во многих случаях может быть достоверно определена природа минерала.

Простейшим прибором для измерения углов кристаллов является прикладной гониометр. (рис. 10-11)

Гониометр (от греч. γωνία (гониа) - угол и греч. μέτρεω (метрео) - измеряю)

Прибор для измерения углов между плоскими гранями твердых тел. Используется в кристаллографии, геодезии, метрологии и др.

1.5 Кристаллы в жизни человека

Мы живем в мире кристаллов. Наши дома и города построены из камня и металла, т.е. в основном из кристаллов. Мы ходим по кристаллам, добываем кристаллы из земли, создаем изделия из кристаллических материалов, едим кристаллы, лечимся кристаллами и даже сами частично состоим из кристаллов. Из кристаллов делают очень много нужных вещей. Например, полупроводниковые кристаллы применяются в радиотехнике, камни в часах- тоже кристаллы. У кристаллов много применений.

Из таблицы видно, что кристаллы широко применяются в науке и технике(прил.): полупроводники, призмы и линзы для оптических приборов, лазеры, пьезоэлектрики, сегнетоэлектрики, оптические и лектрооптические кристаллы, ферромагнетики и ферриты, монокристаллы металлов высокой чистоты...(рис.12-13)

Около 80% всех добываемых природных алмазов и все искусственные алмазы используются в промышленности.

Рентгеноструктурные исследования кристаллов позволили установить строение многих молекул, в том числе и биологически активных – белков, нуклеиновых кислот.

Сегодня трудно назвать такую отрасль производства, в которой бы не использовались кристаллы. Ограненные кристаллы драгоценных камней, в том числе выращенных искусственно, используются как украшения. (рис.14-16)

1.6. Интересные факты о кристаллах

1) Самые крупные кристаллы существуют в Мексике, в двух пещерах. На глубине более 300 метров находятся кристаллы длинною в 10-15 м. А сами таковые состоят из селенита - прозрачный гипс. (рис.17)

2) Знаете ли вы, что кристаллы воспроизводят сами себя и таким образом растут? Их по праву можно называть "живыми" существами природы.(рис.18)

3) Кристаллы могут образовывать самые различные формы. И, несмотря на это, внутренний рисунок кристалла имеет цикличность в произведении других. Это было доказано учеными. (рис.19)

4) Знаете ли вы, что некоторые природные минералы могут образовывать кристаллы? Вот только есть одна проблема, рассмотреть таковые можно лишь через увеличительное стекло. (рис.20)

5) Знаете ли вы, что вода является самым основным "ингредиентом" для образования кристалла? (рис.21)

6) Есть и представители самых больших и крошечных кристаллов. Хранятся они в Австрии в музее "Хрустальные миры". Самый крупный весит более 62 кг и имеет 310 тыс. карат. Крошечный же вариант кристалла в диаметре не достигает и одного сантиметра. Все они принадлежат к самой знаменитой компании "Сваровски" и занесены в книгу рекордов Гиннеса. (рис.22-24)

1.7 Кристаллы - драгоценные камни.

Происхождение и строение драгоценных камней.

Драгоценные камни - это минералы, которые обладают особыми свойствами. Ценность камней зависит от того, насколько они редки, каковы их цвет, прозрачность, вес. Откуда же черпают минералы свою силу? Все минералы образуются в ходе процесса, называемого кристаллизацией. При высокой температуре минерал является частью раствора. Находясь в жидком состоянии, остывая, он приобретает свою многогранную форму и характерную внутреннюю структуру со строгим порядком распределения атомов.

Все драгоценные камни, за редким исключением, принадлежат миру минералов.

Минералы могут возникать различными способами. Одни образуются из огненно-жидких расплавов и газов в недрах Земли или из вулканических лав, извергнутых на ее поверхность (магматические минералы). Другие выпадают из водных растворов либо растут с помощью организмов на (или вблизи) земной поверхности (осадочные минералы). Новые минералы образуются путем перекристаллизации уже существующих минералов под влиянием больших давлений и высоких температур в глубинных слоях земной коры (метаморфические минералы).

Химический состав минералов выражают формулой. Примеси при этом не учитываются, даже если они вызывают появление цветовых оттенков, вплоть до полного изменения цвета минерала. Почти все минералы кристаллизуются в определенных формах, то есть представляют собой кристаллы - однородные по составу тела с регулярным расположением атомов, ионов или молекул в решетке. Кристаллы характеризуются строгими геометрическими формами и ограничены преимущественно гладкими плоскими гранями. В большинстве своем кристаллы мелки, отчасти даже микроскопически малы; но встречаются и гигантские экземпляры. Внутренняя структура кристаллов (пространственная решетка) определяет их физические свойства, в том числе внешнюю форму, твердость и способность раскалываться, тип излома, плотность и оптические явления.

Вывод .

1. Кристаллы- это камни с природной, правильной, симметричной, многогранной формой;

2. Все металлы и почти все камни – кристаллы. На земле нет некристаллических металлов;

3. Мы живем в мире кристаллов. Наши дома и города построены из кристаллов, мы ходим по кристаллам, едим кристаллы, лечимся кристаллами и т.д.

4. Форма кристалла зависит от того, как расположены частицы из которых он состоит;

5. У кристаллов может быть 9 вариантов формы: призма (ромбическая и шестигранная), куб, цилиндр и др. У кристаллов медного купороса- форма ромбической призмы, у кристаллов поваренной соли форма куба.

6. Что бы вырастить кристалл нужно: приготовить насыщенный раствор вещества; выделить на следующий день кристалл-затравку; закрепить кристалл-затравку в растворе и ждать.

Список литературы:

1. Большая иллюстрированная энциклопедия эрудита «Издательство МАХАОН» 2006г.

2. Кантор Б. З «Минерал рассказывает о себе" 1985г.

3. Алексинский В. Н «Занимательные опыты по химии" 1995г.

4. Китайгородский А.И «Кристаллы» 1950г.

Всероссийская Интернет-олимпиада школьников, студентов, аспирантов и молодых ученых в области наносистем, наноматериалов и нанотехнологий "Нанотехнологии - прорыв в Будущее!"

ГБОУ лицей № 000, Москва

Творческая работа

О кристаллах

Работу выполнили учащиеся ГБОУ лицея 1575, Москва:

Руководитель работы:

Учитель физики, завкафедрой естественных наук лицея 1575,

Тьютор: Усович Ольга, МГУ

Аннотация

О кристаллах

Цель работы: изучить, что такое природный кристалл, его свойства, вырастить кристаллы из монофосфата аммония .

Актуальность: Кристаллы издавна привлекали внимание людей своей красотой, правильной формой, загадочностью. Эти тела окружают нас всю жизнь, ведь это и лёд, и снег, и снежинки и многие драгоценные и полудрагоценные камни, а так же твёрдые тела, в которых атомы расположены закономерно, образуя кристаллическую решётку. Интерес к кристаллам проявлял даже такой известный учёный как Ломоносов: «...Одно любопытство довольно побуждает, чтобы знать внутренность российской подземной натуры и оную, для общего приращения наук описав, показать учёному совету».

Задачи: 1.Найти информацию о том, что такое кристалл и минерал

3. Рассказать о том, что такое песок

4. Провести опыты по выращиванию кристалла

Результаты:

1. Мы узнали, что кристаллы помнят предысторию роста

2. Вырастили кристаллы из фосфата аммония, а так же кристаллы на картоне за счет капиллярного роста

3. Составили мини-коллекцию песка

1. Введение. 4

2. Кристаллы и минералы. 5

2.1 Виды кристаллов. 7

2.2 Идеальный кристалл. 7

2.3 Реальный кристалл. 7

3. Свойства кристаллов................................................................................. ……..8

3.1 Симметрия……………………………………………………………………...8

3.2 Анизотропия……………………………………………………………………8

4. Кристаллы песка …………...……………………………………………...…….9

5. Теоретическая часть: «выращивание кристаллов». 12

5.1 Зачем выращивают кристаллы.. 12

6. Самостоятельное выращивание кристаллов. 13

6.1 Кристаллы фосфата аммония. 13

Список литературы. 15

«Почти весь мир кристалличен.

В мире царит кристалл и его твердые,

прямолинейные законы»

Академик

1. Введение.

Еще с детства мы помним сказки, которые нам рассказывали бабушки, дедушки, родители. Эти сказки были из разных стран, на разную тему, с разными персонажами, но у всех них было одно общее, во всех было волшебство. Иногда оно передавалось через сверхъестественные способности персонажей, а иногда через магические предметы. Этими предметами нередко становились и кристаллы: кристалл мудрости, кристалл вечности.… Не одну сказку можно найти, в названии которой упоминается кристалл: «малахитовая шкатулка», «хозяйка медной горы», «воспоминания о камне». И хоть в реальной жизни у кристаллов нет магических свойств, интерес к ним остался с детства.

В нашем проекте мы рассказываем о кристаллах, их свойствах, затрагиваем тему о песке, ведь каждая песчинка это отдельный кристалл кварца. Так же в практической части работы мы вырастили кристаллы из монофосфата аммония.

1.
2.Кристаллы и минералы .

По физическим свойствам и молекулярной структуре твёрдые тела разделяют на три класса: кристаллические, аморфные и композиты.

Кристаллы - твёрдые тела, в которых атомы расположены периодично, образуя трёхмерно-периодическую пространственную укладку - кристаллическую решётку.

Кристаллическая структура, будучи индивидуальной для каждого вещества, относится к основным физико-химическим свойствам.

Кристаллизация - образование кристаллов из паров, растворов, расплавов, вещества в твёрдом состоянии (аморфном или другом кристаллическом), в процессе электролиза и при химических реакциях. Приводит к образованию минералов.

По размерам кристаллы бывают различными. Многие из них можно увидеть только в микроскоп. Но встречаются гигантские кристаллы массой в несколько тонн.

Вид кристаллической ячейки льда первым удалось определить Лайнусу Пойлингу в 1935 году.

В такой элементарной ячейке каждый атом кислорода соседствует с четырьмя атомами водорода , причём угол между связями 109,5°, а у воды угол - 105°. Такое различие в углах приводит к искажению формы молекулы, что приводит к тому, что атомы водорода не могут располагаться посредине между атомами кислорода. Элементарная ячейка льда имеет гексагональную структуру, соответствующую шестисторонней симметрии снежинок.

Гексагональная структура льда остается устойчивой при комнатной температуре до температуры плавления. При других температурах и давлениях могут образовываться различного строения снежинки и льдинки.

Разные кристаллы не обязательно формируются разными элементами. Пример, алмаз и графит. Различие в их свойствах связано исключительно с различием их кристаллической структуры.

Минерал - природное тело с определённым химическим составом и кристаллической структурой, образующееся в результате природных физико-химических процессов и обладающее определёнными физическими, механическими и химическими свойствами.

Понятие «минерал» подразумевает твёрдое природное неорганическое кристаллическое вещество.

По высказыванию известного минералога, профессора Санкт-Петербургского горного института, "минерал - это кристалл". Ясно, что свойства минералов и горных пород теснейшим образом связаны с общими свойствами кристаллического состояния.

Русский учёный Фёдоров Е. С. установил, что в природе может существовать только 230 различных пространственных групп, охватывающих всевозможные кристаллические структуры.

К простым кристаллическим решёткам можно отнести

Простую кубическую (частицы располагаются в вершинах куба);

Гранецентрированную кубическую (частицы располагаются и в вершинах куба и в центре каждой грани);

Объёмноцентрированную кубическую (частицы располагаются и в вершинах куба и в центре каждой кубической ячейки);

Гексагональную.

Важнейшими характеристиками минералов являются кристаллохимическая структура и состав. Все остальные свойства минералов вытекают из них или с ними взаимосвязаны.

2.1 Виды кристаллов.

В зависимости от строения, кристаллы делятся на ионные, ковалентные, молекулярные и металлические.

Ионные кристаллы построены из чередующихся катионов (положительно заряженный ион) и анионов (отрицательно заряженный ион), которые удерживаются в определенном порядке силами электростатического притяжения и отталкивания. Ионные кристаллы образуют большинство солей неорганических и органических кислот, оксиды, гидроксиды, соли. В ковалентных кристаллах (их еще называют атомными) в узлах кристаллической решетки находятся атомы, одинаковые или разные, которые связаны ковалентными (образованные перекрытием пары валентных электронных облаков) связями. Эти связи прочные и направлены под определенными углами. Типичным примером является алмаз; в его кристалле каждый атом углерода связан с четырьмя другими атомами, находящимися в вершинах тетраэдра.

Молекулярные кристаллы построены из изолированных молекул, между которыми действуют сравнительно слабые силы притяжения. В результате такие кристаллы имеют намного меньшие температуры плавления и кипения, твердость их низка. Из неорганических соединений молекулярные кристаллы образуют многие неметаллы (благородные газы, водород, азот , белый фосфор, кислород, сера, галогены), соединения, молекулы которых образованы только ковалентными связями. Этот тип кристаллов характерен также почти для всех органических соединений.

Металлические кристаллы образуют чистые металлы и их сплавы. Такие кристаллы можно увидеть на изломе металлов, а также на поверхности оцинкованной жести. Кристаллическая решетка металлов образована катионами, которые связаны подвижными электронами («электронным газом»). Такое строение обусловливает электропроводность , ковкость, высокую отражательную способность (блеск) кристаллов.

Следует разделить идеальный и реальный кристалл.

2.2 Идеальный кристалл.

Является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани.

2.3 Реальный кристалл.

Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство - закономерное положение атомов в кристаллической решётке.

Для наглядного представления таких структур используются кристаллические решётки, в узлах которых располагаются центры атомов или молекул (или ионов) вещества. Структурный элемент решётки минимального размера называется элементарной ячейкой. Вся кристаллическая решётка может быть построена путём параллельного переноса элементарной ячейки по некоторым направлениям.

Кристаллы, что немало важно, помнят свою предысторию, «место рождения».

Кристаллы образуются:

В момент образования вещества в результате химической реакции

При присоединении к молекуле солей молекулы воды

При осаждении растворённого вещества из раствора

При переходе газообразного или жидкого вещества в твёрдое

При росте кристаллов атомы располагаются в определенном порядке. В это время происходит внешнее воздействие (меняется температура, давление). из-за этого возникают дислокации, из-за них атомы располагаются в ином порядке. Получается, что по дислокации можно понять откуда этот кристалл, как он образовался, что происходит рядом. например снежинки не могут быть одинаковыми, потому что не может быть абсолютно идентичных условий образования, примесей, но все они имеют шестиугольную форму, поскольку имеют схожий основной состав и условия тоже ограничены (температура ниже 0 и т. д.).

Алмаз, графит и наноалмаз являются примером того, что не обязательно кристаллы разные по свойствам состоят из разных веществ. Эти вещества одинаковы по составу и различаются они только строением кристаллической решетки. Наноалмазы были обнаружены в природе в кратерах, образовавшихся от падения метеоритов. Наноалмазы находят применение при создании элементов наноэлектроники.

алмаз и графит наноалмаз

наноалмаз

кристаллическая решётка алмаза и графита

3. Свойства кристаллов.

Хоть реальные кристаллы, встречающиеся в нашей жизни, не обладают магическими свойствами, они обладают не менее интересными свойствами, такие как:

3.1 Симметрия.

Закономерность атомного строения (кристалл может быть совмещён сам с собой путём преобразований симметрии). В природе существует только 230 различных пространственных групп, охватывающих все возможные кристаллические структуры (это установил русский учёный Фёдоров Е. С.)

3.2Анизотропия.

Анизотропия - неодинаковость свойств кристаллов по различным направлениям. Анизотропия является характерным свойством кристаллических тел. При этом свойство анизотропии в простейшем виде проявляется только у монокристаллов. У поликристаллов анизотропия тела в целом может не проявляться вследствие беспорядочной ориентировки микрокристаллов, или даже не проявляется, за исключением случаев специальных условий кристаллизации, специальной обработки и т. п.

Причиной анизотропности кристаллов является то, что при упорядоченном расположении атомов, молекул или ионов силы взаимодействия между ними и межатомные расстояния оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул. Макроскопически эта неодинаковость проявляется как правило лишь если кристаллическая структура не слишком симметрична.

4. Кристаллы песка.

Природная коллекция

Из песка получаются красивые природные коллекции.

Когда в пустыне выпадают осадки, вода быстро впитывается в песок. Если в песке много гипса, частицы его вымываются и уходят с водой вглубь. От сильной жары вода поднимается снова к поверхности. Когда происходит полное испарение воды, образуются новые гипсовые кристаллы. Так как формирование минерала происходит в слое песка, песок становится частью кристалла. И туристы, побывавшие в Сахаре с удовольствием берут эти камни - розы пустыни - в свои коллекции. Диаметр лепестков «розы пустыни» бывает от 2-3 миллиметров до нескольких дециметров. Окраска кристаллов целиком зависит от цвета песка, в котором они формировались. Белые «розы пустыни» находят в тунисской Сахаре, черные – в пустынях Аргентины.

Фото Чопорова А. Пустыня Сахара. Природная коллекция. “Роза пустыни”- песчаник

В наше время коллекционирование песка с разных пляжей и вулканов не редкость. Но мало кто знает, что коллекция песка это еще и коллекция кристаллов. Каждая песчинка это маленький кристалл кварца!

Песок из карьера в основном состоит из желтых кристалликов кварца, примеси содержит в минимальном количестве. В Песке из вулкана Гозо может попадаться обсидиан или вулканическое стекло. В песке из Греции многие песчинки не кристаллы кварца, а маленькие минералы других веществ. Белый песок с пляжей Туниса практически не содержит посторонних веществ. Он весь из белых кристаллов кварца. Песчаник является цельным камнем, состоящим из «слепленных» между собой песчинок. Горный хрусталь имеет много общего с песком. Это тоже кристаллики кварца, но только горный хрусталь крупнее по размерам.

Фото 1.Обычный песок из карьера. Фото 2. Песок с белых пляжей Туниса

Фото 3. Вулканический песок

из Греции. Фото 4. Рождение обсидиана

Фото 5. Песок с острова Гозо.

Фото сделаны в микроскоп с увеличением 10.

5. Теоретическая часть: «выращивание кристаллов».

5.1 Зачем выращивают кристаллы

Зачем создают искусственные кристаллы, если и так почти все твердые тела" вокруг нас имеют кристаллическое строение?

Прежде всего природные кристаллы не всегда достаточно крупны, часто они неоднородны, в них имеются нежелательные примеси. При искусствен­ном выращивании можно получить кристаллы крупнее и чище, чем в природе.

Есть и такие кристаллы, которые в природе редки и ценятся дорого, а в технике очень нужны. Поэтому разработаны лабораторные и заводские методы выращивания кристаллов алмаза, кварца, корунда. В лабораториях выращивают большие кристаллы, необходимые для техники и науки, искусственные драгоценные камни , кристаллические материалы для точных приборов; там создают и те кристаллы, которые изу­чают кристаллографы, физики, химики, металловеды, минералоги, открывая в них новые замечательные яв­ления и свойства. А самое главное - искусственно вы­ращивая кристаллы, создают вещества, каких вообще нет в природе, множество новых веществ. По словам академика Николая Васильевича Белова, крупный кристалл - это объект проявления, изучения и ис­пользования поразительных свойств кристалла, непре­рывно революционизирующих науку и технику.

В лабораториях и на заводах все более совершен­ствуют методы создания искусственных кристаллов с нужными для техники свойствами, так сказать, кри­сталлов «по мерке», или «на заказ».

Так же, когда мы выращиваем кристаллы, мы будто бы создаем кусочек сказки. Будто по волшебству из порошка и воды вырастают кристаллы. Интерес также состоит в том, что узнавая научное объяснение «сказки», нам кажется, что все, что окружает нас – сказка. Только не волшебники, а химики, не магический порошок, а монофосфат аммония, не волшебный кристалл со своими магическими свойствами и красотой, а обычный, но обязательно красивый.

6.Самостоятельное выращивание кристаллов

Кристаллы образуются:

1. В момент образования вещества в результате химической реакции

2. При присоединении к молекуле солей молекулы воды

3. При осаждении растворённого вещества из раствора

4. При переходе газообразного или жидкого вещества в твёрдое

6.1 Кристаллы фосфата аммония.

1. Подготовка материалов. Нам понадобится: фосфат аммония, мерный стакан, горячая вода, палочка для перемешивания, ёмкость для кристаллов (для выращивания второго типа ещё и камни).

2. Добавляем 70 мл горячей воды на 25 г фосфата аммония и тщательно размешиваем, пока фосфат аммония не растворится.

3. А) полученный раствор выливаем в ёмкость и ждём около суток.

Б) 1. В ёмкость для кристаллов насыпаем камни.

2. в ёмкость наливаем раствор и ждём около недели.

3.А другим раствором пропитываем кусок зелёной бумаги.

Можно вырастить кристаллы и на картоне (картон – пористая структура). Нужно натереть наждачкой края картонки и поставить ее в раствор. На схеме можно увидеть как происходит этот процесс. По капиллярам раствор попадает к краям картонки, происходит испарение и процесс кристаллизации, из раствора вырастают кристаллики.

Схема процесса роста кристалла:капилляры - испарение-кристаллизация

Результаты: (кристаллы фосфата аммония) : (Фото автора)

В этой системе кристаллов есть кристаллы дигидрофосфата аммония, это перспективный материал с нелинейными электрическими свойствами.

Выводы:

1.Мы узнали, что кристаллы помнят предысторию роста

2.Вырастили кристаллы из фосфата аммония, а так же кристаллы на картоне за счет капиллярного роста

3.Составили мини-коллекцию песка

Список литературы.

1. «Удивительные наноструктуры», Кеннет Деффейс и Стефен ДеффейсПод редакцией проф. , Бином 2011

2. «Горные породы и минералы» Научно - поп. издание. Москва, Мир, 1986

3. «Драгоценные камни», Смит Г, Мир, 1980

4. «Практическое руководство по минералогии», Смольянинов Н. А, геологическая литература, 1948

5. «Геологический словарь», М,1980

КРИСТАЛЛЫ (от греч. krystallos - кристалл; первоначально - лед),твердые тела, обладающие трехмерной периодич. атомной (или молекулярной) структурой и, при определенных условиях образования, имеющие естеств. форму правильных симметричных многогранников

СТРУКТУРА КРИСТАЛЛА

Разнообразие кристаллов по форме очень велико. Кристаллы могут иметь от

четырех до нескольких сотен граней.

Кристалл представляет собой правильную трехмерную решетку, составленную из атомов или молекул. Структура кристалла – это пространственное расположение его атомов (или молекул).

Трехмерная кристаллическая структура представляет решетку, построенную на трех координатных осях x, y, z, Элементарная ячейка кристалла - это параллелепипед, построенный на векторах трансляции a, b, c. Такая ячейка называется примитивной. В результате повтора элементарной ячейки в пространстве получается пространственная простая решетка - так называемая решетка Браве.( Огюст Браве́ - французскийфизики один из основателейкристаллографии. Положил начало геометрической теории структурыкристаллов: он нашёл (1848г.) основные виды пространственных решёток. Существует четырнадцать типов решеток Браве. Эти решетки отличаются друг от друга видом элементарных ячеек.

ОБРАЗОВАНИЕ КРИСТАЛЛОВ

Кристаллы образуются тремя путями: из расплава, из раствора и из паров. К кристаллизации из расплава относится и процесс образования вулканических пород. Магма, проникающая в трещины земной коры и при охлаждении магмы или лавы атомы и ионы разных элементов притягиваются друг к другу, образуя кристаллы различных минералов. Увеличиваясь в размере, они мешают друг другу расти, и поэтому гладкие наружные грани у них образуются редко.Рост кристаллов из растворов осуществляется при температурах ниже температуры плавления, поэтому в выращенных такими методами кристаллах отсутствуют дефекты, характерные для кристаллов, выращенных из расплава. Кристаллизацию из растворов можно осуществлять за счет изменения температуры раствора, за счет изменения состава раствора, а также использовать кристаллизацию при химической реакции. Метод выращивания кристаллов из паров широко используется для выращивания как массивных кристаллов, так и тонких (поликристаллических или аморфных) покрытий, нитевидных и пластинчатых кристаллов. Конкретный метод выращивания выбирают в зависимости от материала.

Виды кристаллов

Следует разделить идеальный и реальный кристалл.

Идеальный кристалл

Является, по сути, математическим объектом, имеющим полную симметрию, ровные гладкие грани.

Реальный кристалл

Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и деформаций.

ПРИМЕНЕНИЕ КРИСТАЛЛОВ Природные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище. С давних пор из кристаллов делают амулеты и обереги.Украшения из кристаллов сейчас столь же популярны, как и во время неолита. Опираясь на законы оптики, ученые искали прозрачный бесцветный и бездефектный минерал, из которого можно было бы шлифованием и полированием изготавливать линзы. Нужными оптическими и механическими свойствами обладают кристаллы неокрашенного кварца, и первые линзы, в том числе и для очков, изготавливались из них. Даже после появления искусственного оптического стекла потребность в кристаллах полностью не отпала; кристаллы кварца, кальцита и других прозрачных веществ, пропускающих ультрафиолетовое и инфракрасное излучение, до сих пор применяются для изготовления призм и линз оптических приборов. Кристаллы сыграли важную роль во многих технических новинках 20 в. Некоторые кристаллы генерируют электрический заряд при деформации.Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами . Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи. Полупроводниковые приборы изготавливаются из кристаллических веществ, главным образом кремния и германия.Кристаллы используются также в некоторых лазерах для усиления волн СВЧ-диапазона и в лазерах для усиления световых волн. Кристаллы применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет.Искусственные кристаллы. С давних пор человек мечтал синтезировать камни, столь же драгоценные, как и встречающиеся в природных условиях. До 20 в. такие попытки были безуспешны. Но в 1902 удалось получить рубины и сапфиры, обладающие свойствами природных камней. Позднее, в конце 1940-х годов были синтезированы изумруды, а в 1955 фирма "Дженерал электрик" и Физический институт АН СССР сообщили об изготовлении искусственных алмазов. Многие технологические потребности в кристаллах явились стимулом к исследованию методов выращивания кристаллов с заранее заданными химическими, физическими и электрическими свойствами. Труды исследователей не пропали даром, и были найдены способы выращивания больших кристаллов сотен веществ, многие из которых не имеют природного аналога. В лаборатории кристаллы выращиваются в тщательно контролируемых условиях, обеспечивающих нужные свойства, но в принципе лабораторные кристаллы образуются так же, как и в природе - из раствора, расплава или из паров.

КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ
Кристаллом (от греч. krystallos - "прозрачный лед") вначале называли прозрачный кварц (горный хрусталь), встречавшийся в Альпах. Горный хрусталь принимали за лед, затвердевший от холода до такой степени, что он уже не плавится. Первоначально главную особенность кристалла видели в его прозрачности и это слово употребляли в применении ко всем прозрачным природным твердым телам. Позднее стали изготавливать стекло, не уступавшее в блеске и прозрачности природным веществам. Предметы из такого стекла тоже называли "кристальными". Еще и сегодня стекло особой прозрачности называется хрустальным, "магический" шар гадалок - хрустальным шаром. Удивительной особенностью горного хрусталя и многих других прозрачных минералов являются их гладкие плоские грани. В конце 17 в. было подмечено, что имеется определенная симметрия в их расположении. Было установлено также, что некоторые непрозрачные минералы также имеют естественную правильную огранку и что форма огранки характерна для того или иного минерала. Возникла догадка, что форма может быть связана с внутренним строением. В конце концов кристаллами стали называть все твердые вещества, имеющие природную плоскую огранку. Заметной вехой в истории кристаллографии явилась книга, написанная в 1784 французским аббатом Р. Гаюи. Он выдвинул предположение, что кристаллы возникают в результате правильной укладки крохотных одинаковых частиц, которые он назвал "молекулярными блоками". Гаюи показал, каким образом можно получить гладкие плоские грани кальцита, укладывая такие "кирпичики". Различия в форме разных веществ он объяснил разницей как в форме "кирпичиков", так и в способе их укладки. Со времен Гаюи было принято как гипотеза, что в правильной форме кристалла находит отражение упорядоченное внутреннее расположение частиц, но это было подтверждено лишь в 1912, когда М.фон Лауэ в Мюнхене установил, что рентгеновские лучи дифрагируют на атомных плоскостях внутри кристалла. Падая на фотографическую пластинку, дифрагированные лучи создают на ней геометрический узор из темных пятен. По положению и интенсивности таких пятен можно рассчитать размеры структурной единицы и определить расположение атомов в ней. Имея в виду возможность прямого исследования внутренней структуры, многие занимающиеся кристаллографией стали употреблять термин "кристалл" в применении ко всем твердым веществам с упорядоченной внутренней структурой. Нужны лишь благоприятные условия, полагали они, чтобы внутренняя упорядоченность проявилась в виде правильной наружной огранки. Некоторые ученые предпочитают называть твердые вещества с внешне не проявляющейся внутренней упорядоченностью "кристаллическими", а под "кристаллами" понимать, как это было когда-то, твердые вещества с природной огранкой.
КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ
Атомы, из которых состоят газы, жидкости и твердые вещества, имеют разную степень упорядоченности. В газе атомы и небольшие группы атомов, соединенные в молекулы, находятся в постоянном беспорядочном движении. Если охлаждать газ, то достигается температура, при которой молекулы сближаются друг с другом, насколько это возможно, и образуется жидкость. Но атомы и молекулы жидкости все-таки могут скользить относительно друг друга. При охлаждении некоторых жидкостей, например воды, достигается температура, при которой молекулы застывают в относительной неподвижности кристаллического состояния. Эта температура, разная для всех жидкостей, называется температурой замерзания. (Вода замерзает при 0° С; при этом молекулы воды упорядоченно соединяются друг с другом, образуя правильную геометрическую фигуру.) У каждой частицы вещества (атома или молекулы), находящегося в кристаллическом состоянии, окружение точно такое же, как и у любой другой частицы того же типа во всем кристалле. Другими словами, ее окружают вполне определенные частицы, находящиеся на вполне определенных расстояниях от нее. Именно это упорядоченное трехмерное расположение характерно для кристаллов и отличает их от других твердых веществ.
ОБРАЗОВАНИЕ КРИСТАЛЛОВ
Вообще говоря, кристаллы образуются тремя путями: из расплава, из раствора и из паров. Примером кристаллизации из расплава может служить образование льда из воды, так как вода, в сущности, не что иное, как расплавленный лед. К кристаллизации из расплава относится и процесс образования вулканических пород. Магма, проникающая в трещины земной коры или вытесняемая в виде лавы на ее поверхность, содержит многие элементы в разупорядоченном состоянии. При охлаждении магмы или лавы атомы и ионы разных элементов притягиваются друг к другу, образуя кристаллы различных минералов. В таких условиях возникает много зародышей кристаллов. Увеличиваясь в размере, они мешают друг другу расти, а поэтому гладкие наружные грани у них образуются редко.

Кристаллы в природе образуются также из растворов, примером чему могут служить сотни миллионов тонн соли, выпавшей из морской воды. Такой процесс можно продемонстрировать в лаборатории с водным раствором хлорида натрия. Если дать воде возможность медленно испаряться, то в конце концов раствор станет насыщенным и дальнейшее испарение приведет к выделению соли. Положительно заряженные ионы натрия притягивают отрицательно заряженные ионы хлора, в результате чего образуется зародыш кристалла хлорида натрия, который выделяется из раствора. При дальнейшем испарении другие ионы пристраиваются к образовавшемуся ранее зародышу, и постепенно растет кристалл с характерной внутренней упорядоченностью и гладкими наружными гранями.



Кристаллы образуются также непосредственно из пара или газа. При охлаждении газа электрические силы притяжения объединяют атомы или молекулы в кристаллическое твердое вещество. Так образуются снежинки; воздух, содержащий влагу, охлаждается, и прямо из него вырастают снежинки той или иной формы.
СТРУКТУРА КРИСТАЛЛА
Кристалл представляет собой правильную трехмерную решетку, составленную из атомов или молекул. Структура кристалла - это пространственное расположение его атомов (или молекул). Геометрия такого расположения подобна рисунку на обоях, в которых основной элемент рисунка повторяется многократно. Одинаковые точки можно расположить на плоскости пятью разными способами, допускающими бесконечное повторение. Для пространства же имеется 14 способов расположения одинаковых точек, удовлетворяющих требованию, чтобы у каждой из них было одно и то же окружение. Это пространственные решетки, называемые также решетками Браве по имени французского ученого О.Браве, который в 1848 доказал, что число возможных решеток такого рода равно 14 (рис. 1-1, 1-2).





Требование того, чтобы каждый узел решетки имел одинаковое атомное окружение, применительно к кристаллам налагает ограничения на сам основной элемент рисунка. При повторении он должен заполнять все пространство, не оставляя пустых узлов. Было установлено, что существует лишь 32 варианта расположения объектов вокруг некоторой точки (например, атомов вокруг узла решетки), удовлетворяющих этому требованию. Это так называемые 32 пространственные группы. В сочетании с 14 пространственными решетками они дают 230 возможных вариантов расположения объектов в пространстве, называемых пространственными группами. Поскольку структура кристалла определяется не только пространственным расположением атомов, но и их типом, число структур очень велико. Три кристаллические структуры, представленные на рис. 2, неодинаковы, хотя и относятся к одной и той же пространственной группе.



Общими для всех кристаллов являются 14 пространственных решеток, наименьшие формообразующие ячейки которых показаны на рис. 1. Элементарная ячейка любого кристалла подобна одной из них, но ее размеры определяются размерами, числом и расположением атомов. Элементарная ячейка в виде параллелепипеда, вообще говоря, аналогична "кирпичику" Гаюи, т.е. базисному элементу, при повторении которого образуется кристалл. Рентгеновский анализ позволяет с большой точностью определять длину сторон ячейки и углы между сторонами. Элементарные ячейки очень малы и имеют порядок нанометра (10-9 м). Сторона кубической элементарной ячейки хлорида натрия равна 0,56 нм. Таким образом, в крохотной крупинке обычной поваренной соли содержится примерно миллион элементарных ячеек, уложенных одна к другой. Методом дифракции рентгеновских лучей (рентгенография) можно определить не только абсолютные размеры элементарной ячейки, но также пространственную группу и даже расположение атомов в пространстве, т.е. структуру кристалла. Важную роль в исследовании кристаллических структур сыграли также методы дифракции электронов (электронография), дифракции нейтронов (нейтронография) и инфракрасной спектроскопии.
МОРФОЛОГИЯ КРИСТАЛЛОВ
Кристаллы имеют некую внутреннюю симметрию, которая не обнаруживается в бесформенной крупинке. Симметрия кристаллов получает наружное выражение только тогда, когда они имеют возможность свободно расти без каких-либо помех. Но даже хорошо организованные кристаллы редко имеют совершенную форму, и нет двух кристаллов, которые были бы совершенно одинаковы. Форма кристалла зависит от многих факторов, один из которых - форма элементарной ячейки. Если такой "кирпичик" повторить одинаковое число раз параллельно каждой из его сторон, то получится кристалл, форма и относительные размеры которого точно такие же, как у элементарной ячейки. Близкая к этому картина характерна для многих кристаллических веществ. Но на форму оказывают влияние и такие факторы, как температура, давление, чистота, концентрация и направление движения раствора. Поэтому кристаллы одного и того же вещества могут обнаруживать большое разнообразие форм. Различие форм связано с тем, как именно укладываются одинаковые "кирпичики". Аналогия между элементарными ячейками и кирпичами очень полезна (рис. 3). Укладывая кирпичи так, чтобы их соответствующие стороны были параллельны, можно построить стену (рис. 3,а), длина, высота и толщина которой будут зависеть только от числа кирпичей, уложенных в данном направлении. Если же в определенном порядке удалять кирпичи, то можно получить миниатюрные лестничные марши (рис. 3,б,в) с наклоном, зависящим от соотношения чисел кирпичей в подступенке и наступи ступеньки лестницы. Если на такую лестницу наложить линейку, то она образует угол, определяемый размерами кирпича и способом укладки. Углы наклона x и y симметричны независимо от относительных длин s и f (рис. 3,г).



Точно так же и кристалл может принимать ту или иную форму, если в строго определенном порядке пропускаются некоторые ряды или группы элементарных ячеек (рис. 4). Косые грани кристалла подобны лестницам, сложенным из кирпичей, но "кирпичики" здесь столь малы, что грани кристалла выглядят, как гладкие поверхности. Углы между соответствующими гранями кристалла постоянны, независимо от его размера. Это установил в 1669 датчанин Н.Стено на примере кристаллов кварца. Тем самым он показал, что форма является характеристикой кристаллического вещества. Ныне известно, что форма кристалла зависит от размеров и формы элементарной ячейки, и положение Стено приняло обобщенную форму закона, согласно которому углы между соответствующими гранями кристаллов одного и того же вещества постоянны.



Размеры и форма граней изменяются от кристалла к кристаллу. Тем не менее, имеется некая внешняя симметрия, присущая всем хорошо ограненным кристаллам. Она обнаруживается в повторении углов и похожести граней, одинаковых в смысле внешнего вида, дефектов травления и особенностей роста. Если кристалл имеет почти совершенную форму, то его симметричные грани тоже подобны по размерам и форме. До появления рентгеновской кристаллографии самым важным делом занимавшихся кристаллографией было измерение углов между гранями кристаллов. Вычерчивая на основе таких угловых измерений грани кристалла в стереографической или гномонической проекции, можно выявить симметричное расположение граней независимо от размера и формы. По такой проекции можно вычислить отношения осей, а затем выполнить чертеж кристалла.
Элементы симметрии. Задолго до того, как 32 типа симметричных расположений точечных групп были определены рентгеновскими методами, они были выявлены путем исследования морфологии, т.е. формы и структуры кристаллов. На основании вида и расположения граней, а также углов между ними кристаллы приписывались одному из 32 кристаллографических классов. Поэтому пространственные группы и кристаллографические классы - это как бы синонимы, и существуют три основных элемента симметрии: плоскость, ось и центр (рис. 5).



Плоскость симметрии. Многие хорошо известные нам предметы обладают симметрией относительно плоскости. Например, стул или стол можно представить себе разделенными на две одинаковые части. Точно так же плоскость симметрии делит кристалл на две части, каждая из которых является зеркальным отображением другой. (Плоскость симметрии иногда называют плоскостью зеркального отображения.)
Ось симметрии. Ось симметрии - это воображаемая прямая, поворотом вокруг которой на часть полного оборота можно привести объект к совпадению с самим собой. В кристаллах возможны только пять видов осевой симметрии: 1-го порядка (эквивалентная отсутствию вращения), 2-го порядка (повторение через 180°), 3-го порядка (повторение через 120°), 4-го порядка (повторение через 90°) и 6-го порядка (повторение через 60°).
Центр симметрии. Кристалл имеет центр симметрии, если любая прямая, мысленно проведенная через него, на противоположных сторонах поверхности кристалла проходит через одинаковые точки. Таким образом, на противоположных сторонах кристалла находятся одинаковые грани, ребра и углы. Имеются 32 возможные комбинации плоскостей, осей и центров симметрии в кристаллах; каждой такой комбинацией определяется кристаллографический класс. Один класс не имеет симметрии; говорят, что он имеет одну ось вращения 1-го порядка.
Кристаллографические системы. На рис. 1 представлены семь базисных ячеек решеток разной формы. Ромбоэдрическая и гексагональная решетки определяются одними и теми же осями. Таким образом, при наличии 32 симметрий точечных групп имеются только шесть основных форм элементарных ячеек. Соответственно форме основной "строительной" единицы 32 кристаллографических класса разделяются на шесть кристаллографических систем. Каждая кристаллографическая система имеет собственную систему координат, которыми определяются элементарная ячейка, а следовательно, и грани кристалла. На рис. 1 это стороны a, b и c элементарной ячейки. Принято через c обозначать вертикальную сторону, через b - горизонтальную в плоскости чертежа и через a - горизонтальную сторону, перпендикулярную плоскости чертежа. Прямые, на которых лежат эти стороны, служат линиями отсчета и называются кристаллографическими осями. Угол между b и c обозначается a, между a и c - b, а между a и b - g. Названия кристаллографических систем, относительные длины и угловые соотношения между соответствующими кристаллографическими осями таковы: Триклинная: a не равно b не равно c, a не равно b не равно g. Моноклинная: a не равно b не равно c, a = g = 90°, b > 90°. Орторомбическая: a не равно b не равно c, a = b = g = 90°. Тетрагональная: a = b не равно c, a = b = g = 90°. Поскольку a и b в этой системе равны и равноценны, их обычно обозначают через a1, a2. Сторона c может быть больше либо меньше a. Гексагональная: a = b не равно c, a = b = 90°, g = 120°. Элементарная ячейка гексагональных кристаллов обычно рассматривается как тройная и определяется тремя горизонтальными осями a1, a2, a3, составляющими угол 120° друг с другом и 90° с условно вертикальной осью c. Кубическая (изометрическая): a = b = c, a = b = g = 90°. На рис. 6 показаны разнообразные формы, которые могут иметь кристаллы, относящиеся к разным кристаллографическим системам.



Формы кристаллов. Хотя с первого взгляда все грани, определяющие форму кристалла, могут показаться одинаковыми, при тщательном исследовании обнаруживаются небольшие различия. Это могут быть различия в блеске, нерегулярностях роста, дефектах травления или полосчатости. Тем не менее, некоторые грани оказываются совершенно одинаковыми. Такие грани состоят из одинаковых и одинаково расположенных атомов и соответствуют определенной форме кристаллов. Распределение граней разных форм выявляет симметрию, так как все грани одной формы имеют одинаковое отношение к элементу симметрии. Некоторые кристаллы имеют грани только одной формы, а другие - грани многих форм. На рис. 7,а,б,в показаны три различные формы кубической системы, а на рис. 7,г - комбинация этих трех форм.



ОПТИЧЕСКАЯ КРИСТАЛЛОГРАФИЯ
Важное значение в описании и идентификации кристаллов имеют их оптические свойства. Когда свет падает на прозрачный кристалл, он частично отражается, а частично проходит внутрь кристалла. Свет, отражающийся от кристалла, придает ему блеск и цвет, а свет, проходящий внутрь кристалла, создает эффекты, которые определяются его оптическими свойствами.
Показатель преломления. При переходе наклонного луча света из воздуха в кристалл его скорость распространения уменьшается; падающий луч отклоняется, или преломляется. Чем больше плотность кристалла и чем больше угол падения луча (i), тем больше угол преломления (r). Отношение sin i к sin r есть величина постоянная. Это обычно записывают в виде равенства sin i/sin r = n; константа n называется показателем преломления. Это самая важная из оптических характеристик кристалла, и ее можно очень точно измерить. См. также ОПТИКА. С позиций оптики все прозрачные вещества можно разделить на две группы: изотропные и анизотропные. К изотропным относятся кристаллы кубической системы и некристаллические вещества, например стекло. В изотропных веществах свет распространяется во всех направлениях с одинаковой скоростью, и поэтому такие вещества характеризуются одним показателем преломления. Группу анизотропных веществ составляют кристаллы всех других кристаллографических систем. В веществах этой группы скорость света, а следовательно, и показатель преломления непрерывно изменяются при переходе от одного кристаллографического направления к другому. Когда свет входит в анизотропный кристалл, он разделяется на два луча, колеблющихся под прямым углом друг к другу и распространяющихся с разными скоростями. Такое явление называется двойным лучепреломлением; всякий анизотропный кристалл характеризуется двумя показателями преломления. Для гексагональных и тетрагональных кристаллов указывают максимальный и минимальный, т.е. "главные" показатели преломления. Один из этих главных показателей преломления соответствует лучу света, колеблющемуся параллельно оси c, а с другой - лучу света, колеблющемуся под прямым углом к этой оси. В орторомбических, моноклинных и триклинных кристаллах имеются три главных показателя преломления: максимальный, минимальный и промежуточный, определяемые лучами света, колеблющимися в трех взаимно перпендикулярных направлениях. Поскольку показатели преломления зависят от химического состава и строения материала, они являются характеристическими величинами для каждого кристаллического твердого вещества, и их измерение служит эффективным методом его идентификации. Пользуясь простым рефрактометром, ювелир или специалист по драгоценным камням может измерить показатель преломления драгоценного камня, не вынимая его из оправы. С помощью поляризационного микроскопа минералог без особого труда определяет тип минерала, измеряя его показатели преломления и другие оптические характеристики на мелких крупинках.
См. также ДРАГОЦЕННЫЕ КАМНИ .
Плеохроизм. В анизотропных кристаллах свет, колеблющийся в разных кристаллографических направлениях, может поглощаться по-разному. Одно из возможных следствий такого явления, называемого плеохроизмом, - изменение цвета кристалла при изменении направления колебаний. В других кристаллах свет, колеблющийся в одном кристаллографическом направлении, может распространяться почти без потерь интенсивности, а под прямым углом к нему почти полностью поглощаться. На различиях в поглощении света тонкими ориентированными кристаллами основано действие таких поляризационных светофильтров, как поляроид.
ПРИМЕНЕНИЕ КРИСТАЛЛОВ
Природные кристаллы всегда возбуждали любопытство у людей. Их цвет, блеск и форма затрагивали человеческое чувство прекрасного, и люди украшали ими себя и жилище. С давних пор с кристаллами были связаны суеверия; как амулеты, они должны были не только ограждать своих владельцев от злых духов, но и наделять их сверхъестественными способностями. Позднее, когда те же самые минералы стали разрезать и полировать, как драгоценные камни, многие суеверия сохранились в талисманах "на счастье" и "своих камнях", соответствующих месяцу рождения. Все природные драгоценные камни, кроме опала, являются кристаллическими, и многие из них, такие, как алмаз, рубин, сапфир и изумруд, попадаются в виде прекрасно ограненных кристаллов. Украшения из кристаллов сейчас столь же популярны, как и во время неолита. Опираясь на законы оптики, ученые искали прозрачный бесцветный и бездефектный минерал, из которого можно было бы шлифованием и полированием изготавливать линзы. Нужными оптическими и механическими свойствами обладают кристаллы неокрашенного кварца, и первые линзы, в том числе и для очков, изготавливались из них. Даже после появления искусственного оптического стекла потребность в кристаллах полностью не отпала; кристаллы кварца, кальцита и других прозрачных веществ, пропускающих ультрафиолетовое и инфракрасное излучение, до сих пор применяются для изготовления призм и линз оптических приборов. Кристаллы сыграли важную роль во многих технических новинках 20 в. Некоторые кристаллы генерируют электрический заряд при деформации. Первым их значительным применением было изготовление генераторов радиочастоты со стабилизацией кварцевыми кристаллами. Заставив кварцевую пластинку вибрировать в электрическом поле радиочастотного колебательного контура, можно тем самым стабилизировать частоту приема или передачи. Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. При этом важную роль играют легирующие примеси, которые вводятся в кристаллическую решетку. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую. Полупроводники широко применяются также в преобразователях переменного тока в постоянный.
См. также
ПОЛУПРОВОДНИКОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ ;
ТРАНЗИСТОР . Кристаллы используются также в некоторых мазерах для усиления волн СВЧ-диапазона и в лазерах для усиления световых волн. Кристаллы, обладающие пьезоэлектрическими свойствами, применяются в радиоприемниках и радиопередатчиках, в головках звукоснимателей и в гидролокаторах. Некоторые кристаллы модулируют световые пучки, а другие генерируют свет под действием приложенного напряжения. Перечень видов применения кристаллов уже достаточно длинен и непрерывно растет.
См. также
ЛАЗЕР ;
КВАНТОВЫЕ ГЕНЕРАТОРЫ И УСИЛИТЕЛИ .
Искусственные кристаллы. С давних пор человек мечтал синтезировать камни, столь же драгоценные, как и встречающиеся в природных условиях. До 20 в. такие попытки были безуспешны. Но в 1902 удалось получить рубины и сапфиры, обладающие свойствами природных камней. Позднее, в конце 1940-х годов были синтезированы изумруды, а в 1955 фирма "Дженерал электрик" и Физический институт АН СССР сообщили об изготовлении искусственных алмазов. Многие технологические потребности в кристаллах явились стимулом к исследованию методов выращивания кристаллов с заранее заданными химическими, физическими и электрическими свойствами. Труды исследователей не пропали даром, и были найдены способы выращивания больших кристаллов сотен веществ, многие из которых не имеют природного аналога. В лаборатории кристаллы выращиваются в тщательно контролируемых условиях, обеспечивающих нужные свойства, но в принципе лабораторные кристаллы образуются так же, как и в природе - из раствора, расплава или из паров. Так, пьезоэлектрические кристаллы сегнетовой соли выращиваются из водного раствора при атмосферном давлении. Большие кристаллы оптического кварца выращиваются тоже из раствора, но при температурах 350-450° C и давлении КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ140 МПа. Рубины синтезируют при атмосферном давлении из порошка оксида алюминия, расплавляемого при температуре 2050° C. Кристаллы карбида кремния, применяемые в качестве абразива, получают из паров в электропечи.
См также АБРАЗИВЫ ; ФИЗИКА ТВЕРДОГО ТЕЛА .
ЛИТЕРАТУРА
Современная кристаллография. М., 1979-1981

Энциклопедия Кольера. - Открытое общество . 2000 .

Изначально кристаллами называли горный хрусталь - безупречный в своей холодной красоте прозрачный кварц. В прежние времена, когда ученые еще не могли объяснить причину и принцип их образования, кристаллам приписывали всевозможные волшебные свойства, свидетельство тому - многочисленные легенды и сказания, в которых упоминаются магические кристаллы, способные исцелять больных или показывать будущее. Современная кристаллофизика развеяла весь этот романтический туман, издавна окутывающий кристаллы, и дала четкое определение, что такое кристалл с научной точки зрения.

Кристалл - что это такое

Кристалл - это твердое тело природного происхождения либо образованное в лабораторных условиях, имеющее форму правильного многогранника. Правильность формы кристалла основана на его внутренней структуре - частицы вещества, из которых слагается кристалл (молекулы, атомы и ионы), располагаются в нем в определенной закономерности и образуют периодично-повторяющуюся трехмерную пространственную укладку, иначе называемую «кристаллической решеткой».

Виды и типы кристаллов

Ученые, занимающиеся изучением кристаллов, различают такие понятия, как «кристалл идеальный» и «кристалл реальный».

Идеальный кристалл

Идеальный кристалл - это некая абстрактная математическая модель кристалла, в которой ему приписывается абсолютно правильная форма, соответствующая его кристаллической решетке, полная симметрия и идеально ровные грани. Проще говоря, идеальный кристалл - это кристалл с полным набором всех качеств, свойств и характеристик, присущих данному виду кристаллов.

Реальный кристалл

Реальный кристалл - это тот кристалл, что существует в действительности. В отличие от идеального, у него имеются некоторые дефекты внутренней структуры, грани его не безупречны, а симметрия понижена. Но при всех этих недостатках в реальном кристалле сохраняется то главное свойство, которое и делает его кристаллом - частицы в нем располагаются в закономерном порядке.

Происхождение кристаллов

  • Природные (натуральные) кристаллы зарождаются и вырастают в недрах Земли в течение длительного времени в условиях сверхвысоких температур и огромного давления.
  • Искусственные кристаллы люди научились выращивать не только в лабораториях, но даже в домашних условиях. Кстати, о том, как самому вырастить соляной кристалл из раствора обычной поваренной соли, вы можете узнать из нашей статьи .

Вещества, образующие кристаллы

Кристаллы - это не только алмазы, аметисты, изумруды, сапфиры и прочие драгоценные и полудрагоценные камни, как некоторые из нас привыкли считать. Помимо этих самых известных и красивых кристаллов в природе существует множество других веществ, имеющих кристаллическое строение. Самым распространенным веществом, обладающим способностью образовывать кристаллы, является обычная вода. Как выглядят кристаллы воды, знают даже дети -льдинки и снежинки хорошо всем известны.