Заговоры. Амулеты и талисманы. Привороты. Нумерология

Кинетическая потенциальная закон сохранение энергии. Энергия. Потенциальная и кинетическая энергия. Закон сохранения энергии. Работа силы трения

Кинетическая энергия механической системы - это энергия механического движения этой системы.

Сила F , действуя на покоящееся тело и вызывая его движение, совершает рабо­ту, а энергия движущегося тела возраста­ет на величину затраченной работы. Таким образом, работа dA силы F на пути, кото­рый тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

Используя второй закон Ньютона F =mdv /dt

и умножая обе части равен­ства на перемещение dr , получим

F dr =m(dv /dt)dr=dA

Таким образом, тело массой т, движущее­ся со скоростью v, обладает кинетической энергией

Т = т v 2 /2. (12.1)

Из формулы (12.1) видно, что кинети­ческая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее дви­жения.

При выводе формулы (12.1) предпола­галось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать за­коны Ньютона. В разных инерциальных системах отсчета, движущихся друг отно­сительно друга, скорость тела, а следова­тельно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетиче­ская энергия зависит от выбора системы отсчета.

Потенциальная энергия - механиче­ская энергия системы тел, определяемая их взаимным расположением и характе­ром сил взаимодействия между ними.

Пусть взаимодействие тел осуществля­ется посредством силовых полей (напри­мер, поля упругих сил, поля гравитацион­ных сил), характеризующихся тем, что работа, совершаемая действующими сила­ми при перемещении тела из одного поло­жения в другое, не зависит от того, по какой траектории это перемещение прои­зошло, а зависит только от начального и конечного положений. Такие поля на­зываются потенциальными, а силы, дей­ствующие в них,- консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является си­ла трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией II. Работа консервативных сил при элемен­тарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

Работа dА выражается как скалярное произведение силы F на перемещение dr и выражение (12.2) можно записать в виде

F dr =-dП. (12.3)

Следовательно, если известна функция П(r ), то из формулы (12.3) можно найти силу F по модулю и направлению.

Потенциальная энергия может быть определена исходя из (12.3) как

где С - постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной по­стоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциаль­ную энергию тела в каком-то определен­ном положении считают равной нулю (вы­бирают нулевой уровень отсчета), а энер­гию тела в других положениях отсчитыва­ют относительно нулевого уровня. Для консервативных сил

или в векторном виде

F =-gradП, (12.4) где

(i, j, k - единичные векторы координат­ных осей). Вектор, определяемый выраже­нием (12.5), называется градиентом ска­ляра П.

Для него наряду с обозначением grad П применяется также обозначение П.  («набла») означает символический вектор, называе­мый оператором Гамильтона или набла-оператором:

Конкретный вид функции П зависит от характера силового поля. Например, по­тенциальная энергия тела массой т, под­нятого на высоту h над поверхностью Зем­ли, равна

П = mgh, (12.7)

где высота h отсчитывается от нулевого уровня, для которого П 0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (ки­нетическая энергия всегда положитель­на!}. Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h"), П= - mgh".

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна дефор­мации:

F х упр = -kx,

где F x упр - проекция силы упругости на ось х; k - коэффициент упругости (для пружины - жесткость), а знак минус ука­зывает, что F x упр направлена в сторону, противоположную деформации х.

По третьему закону Ньютона, дефор­мирующая сила равна по модулю силе упругости и противоположно ей направле­на, т. е.

F x =-F x упр =kx Элементарная работа dA, совершаемая силой F x при бесконечно малой деформации dx, равна

dA = F x dx = kxdx,

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

П=kx 2 /2.

Потенциальная энергия системы, подо­бно кинетической энергии, является функ­цией состояния системы. Она зависит толь­ко от конфигурации системы и ее положе­ния по отношению к внешним телам.

Полная механическая энергия систе­мы - энергия механического движения и взаимодействия:

т. е. равна сумме кинетической и потен­циальной энергий.

Гл.2-3, §9-11

План лекции

    Работа и мощность

    Закон сохранения импульса.

    Энергия. Потенциальная и кинетическая энергии. Закон сохранения энергии.

  1. Работа и мощность

Когда под действием некоторой силы тело совершает перемещение, то действие силы характеризуется величиной, которая называется механической работой.

Механическая работа - мера действия силы, в результате которого тела совершают перемещение.

Работа постоянной силы. Если тело движется прямолинейно под действием постоянной силы , составляющей некоторый угол  с направлением перемещения (рис.1), работа равна произведению этой силы на перемещение точки приложения силы и на косинус угла  между векторами и ; или работа равна скалярному произведению вектора силы на вектор перемещения:


Работа переменной силы. Чтобы найти работу переменной силы, пройденный путь разбивают на большое число малых участков так, чтобы их можно было считать прямолинейными, а действующую в любой точке данного участка силу - постоянной.

Элементарная работа (т.е. работа на элементарном участке ) равна , а вся работа переменной силы на всем пути S находится интегрированием: .

В качестве примера работы переменной силы рассмотрим работу, совершаемую при деформации (растяжении) пружины, подчиняющейся закону Гука.

Если начальная деформация x 1 =0, то .

При сжатии пружины совершается такая же работа.

Графическое изображение работы (рис.3).

На графиках работа численно равна площади заштрихованных фигур.

Для характеристики быстроты совершения работы вводят понятие мощности.

Мощность постоянной силы численно равна работе, совершаемой этой силой за единицу времени.

1 Вт- это мощность силы, которая за 1 с совершает 1 Дж работы.

В случае переменной мощности (за малые одинаковые промежутки времени совершается различная работа) вводится понятие мгновенной мощности:

где
скорость точки приложения силы.

Т.о. мощность равна скалярному произведению силы на скорость точки её приложения.

Т.к.

2. Закон сохранения импульса.

Механической системой называется совокупность тел, выделенная для рассмотрения. Тела, образующие механическую систему, могут взаимодействовать, как между собой, так и с телами, не принадлежащими данной системе. В соответствие с этим силы, действующие на тела системы, подразделяют на внутренние и внешние.

Внутренними называются силы, с которыми тела системы взаимодействуют между собой

Внешними называются силы, обусловленные воздействием тел, не принадлежащих данной системе.

Замкнутой (или изолированной) называется система тел, на которую не действуют внешние силы.

Для замкнутых систем оказываются неизменными (сохраняются) три физических величины: энергия, импульс и момент импульса. В соответствии с этим имеют место три закона сохранения: энергии, импульса, момента импульса.

Рассмотрим систему, состоящую из 3-х тел, импульсы которых
и на которые действуют внешние силы (рис. 4).Согласно 3 закону Ньютона, внутренние силы попарно равны и противоположно направлены:

Внутренние силы:

Запишем основное уравнение динамики для каждого из этих тел и сложим почленно эти уравнения

Для N тел:

.

Сумма импульсов тел, составляющих механическую систему, называется импульсом системы:

Т.о., производная по времени импульса механической системы равна геометрической сумме внешних сил, действующих на систему,

Для замкнутой системы
.

Закон сохранения импульса : импульс замкнутой системы материальных точек остается постоянным.

Из этого закона следует неизбежность отдачи при стрельбе из любого орудия. Пуля или снаряд в момент выстрела получают импульс, направленный в одну сторону, а винтовка или орудие получают импульс, направленный противоположно. Для уменьшения этого эффекта применяют специальные противооткатные устройства, в которых кинетическая энергия орудия превращается в потенциальную энергию упругой деформации и во внутреннюю энергию противооткатного устройства.

Закон сохранения импульса лежит в основе движения судов (подводных лодок) при помощи гребных колес и винтов, и водометных судовых двигателей (насос всасывает забортную воду и отбрасывает ее за корму). При этом некоторое количество воды отбрасывается назад, унося с собой определенный импульс, а судно приобретает такой же импульс, направленный вперед. Этот же закон лежит в основе реактивного движения.

Абсолютно неупругий удар - столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое. При таком ударе механическая энергия частично или полностью переходит во внутреннюю энергию соударяющихся тел, т.е. закон сохранения энергии не выполняется, выполняется только закон сохранения импульса.

,

Теория абсолютно упругих и абсолютно неупругих ударов используется в теоретической механике для расчета напряжений и деформаций, вызванных в телах ударными силами. При решении многих задач удара часто опираются на результаты разнообразных стендовых испытаний, анализируя и обобщая их. Теория удара широко используется при расчетах взрывных процессов; применяется в физике элементарных частиц при расчетах столкновений ядер, при захвате частиц ядрами и в других процессах.

Большой вклад в теорию удара внёс российский академик Я.Б.Зельдович, который, разрабатывая в 30-х годах физические основы баллистики ракет, решил сложную задачу удара тела, летевшего с большой скоростью по поверхности среды.

Энергия - универсальная мера различных форм движения и взаимодействия.

Изменение механического движения тела вызывается силами, которые действуют на него со стороны других тел. С целью количественно описать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы .

Если тело движется прямолинейно и на него действует постоянная сила F , составляющая некоторый угол α с направлением перемещения, то работа этой силы равна проекции силы F s на направление перемещения (F s = Fcosα), умноженной на соответствующее перемещение точки приложения силы:

Если взять участок траектории от точки 1 до точки 2, то работа на нем равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Поэтому эту сумму можно привести к интегралу

Единица работы - джоуль (Дж): 1 Дж - работа, совершаемая силой 1 Н на пути 1 м (1 Дж=1 Н м).
Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности:
За время dt сила F совершает работу F dr , и мощность, развиваемая этой силой, в данный момент времени
т. е. равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения этой силы; N - величина скалярная.
Единица мощности - ватт (Вт): 1 Вт - мощность, при которой за время 1 с совершается работа 1 Дж (1 Вт = 1 Дж/с)

Кинетическая и потенциальная энергия.

Кинетическая энергия механической системы - это энергия механического движения рассматриваемой системы.
Сила F , воздействуя на покоящееся тело и приводя его в движение, совершает работу, а энергия движущегося тела увеличивается на величину затраченной работы. Значит, работа dA силы F на пути, который тело прошло за время возрастания скорости от 0 до v, тратится на увеличение кинетической энергии dT тела, т. е.

Используя второй закон Ньютона и умножая на перемещение dr получаем
(1)
Из формулы (1) видно, что кинетическая энергия зависит только от массы и скорости тела (или точки), т. е. кинетическая энергия тела зависит только от состояния ее движения.
Потенциальная энергия - механическая энергия системы тел , которая определяется характером сил взаимодействия между ними и их взаимным расположением.
Пусть взаимодействие тел друг на друга осуществляется силовыми полями (например, поля упругих сил, поля гравитационных сил), которые характеризуются тем, что работа, совершаемая действующими в системе силами при перемещении тела из первое положения во второе, не зависит от траектории, по которой это перемещение произошло, а зависит только от начального и конечного положений системы . Такие поля называются потенциальными , а силы, действующие в них, - консервативными . В случае, если работа силы зависит от траектории перемещения тела из одного положения в другое, то такая сила называется диссипативной ; примером диссипативной силы является сила трения.
Конкретный вид функции P зависит от вида силового поля. Например, потенциальная энергия тела массой m, поднятого на высоту h над поверхностью Земли, равна (7)

Полная механическая энергия системы - энергия механического движения и взаимодействия :
т. е. равна сумме кинетической и потенциальной энергий.

Закон Сохранение Энергии.

т. е. полная механическая энергия системы остается постоянной. Выражение (3) представляет собой закон сохранения механической энергии : в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со течением времени.

Механические системы, на тела которых действуют только консервативные силы (как внутренние так и внешние), называютсяконсервативными системами , и закон сохранения механической энергии мы сформулируем так: в консервативных системах полная механическая энергия сохраняется .
9. Удар абсолютно упругий и неупругий тел.

Удар - это столкновение двух или более тел, взаимодействующих очень короткое время.

При ударе тела испытывают деформацию. Понятие удара подразумевает, что кинетическая энергия относительного движения ударяющихся тел на короткое время преобразуется в энергию упругой деформации. Во время удара имеет место перераспределение энергии между соударяющимися телами. Опыты показывают, что относительная скорость тел после соударения не достигает своего значения до соударения. Это объясняется тем, что не бывает идеально упругих тел и идеально гладких поверхностей. Отношение нормальной составляющей относительной скорости тел после удара к нормальной составляющей относительной скорости тел до удара называется коэффициентом восстановления ε: ε = ν n "/ν n где ν n "-после удара; ν n –до удара.

Если для соударяющихся тел ε=0, то такие тела называются абсолютно неупругими , если ε=1 - абсолютно упругими . На практике для всех тел 0<ε<1. Но в некоторых случаях тела можно с большой степенью точности рассматривать либо как абсолютно неупругие, либо как абсолютно упругие.

Линией удара называется прямая, проходящая через точку соприкосновения тел и перпендикулярная к поверхности их соприкосновения. Удар называется центральным , если соударяющиеся тела до удара движутся вдоль прямой, проходящей через центры их масс. Здесь мы рассматриваем только центральные абсолютно упругие и абсолютно неупругие удары.
Абсолютно упругий удар - соударение двух тел, в результате которого в обоих участвующих в столкновении телах не остается никаких деформаций и вся кинетическая энергия тел до удара после удара снова превращается в первоначальную кинетическую энергию.
Для абсолютно упругого удара выполняются закон сохранения кинетической энергии и закон сохранения импульса.

Абсолютно неупругий удар - соударение двух тел, в результате которого тела соединяются, двигаясь дальше как единое целое. Абсолютно неупругий удар можно продемонстрировать с помощью шаров из пластилина (глины), которые движутся навстречу друг другу.

За счет его нахождения в поле действия сил. Другое определение: потенциальная энергия - это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы . Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином .

Единицей измерения энергии в СИ является Джоуль .

Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.

Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными .

Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.

Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.

Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя ; таким образом, кинетическая энергия - часть полной энергии, обусловленная движением .

Кинетическая энергия

Рассмотрим систему, состоящую из одной частицы, и запишем уравнение движения :

Есть результирующая всех сил , действующих на тело. Скалярно умножим уравнение на перемещение частицы . Учитывая, что , Получим:

- момент инерции тела

- угловая скорость тела.

Закон сохранения энергии.

Зако́н сохране́ния эне́ргии - фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.

С фундаментальной точки зрения, согласно теореме Нётер , закон сохранения энергии является следствием однородности времени и в этом смысле является универсальным, то есть присущим системам самой разной физической природы. Другими словами, для каждой конкретной замкнутой системы, вне зависимости от её природы можно определить некую величину, называемую энергией, которая будет сохраняться во времени. При этом выполнение этого закона сохранения в каждой конкретно взятой системе обосновывается подчинением этой системы своим специфическим законам динамики, вообще говоря различающимся для разных систем.

Однако в различных разделах физики по историческим причинам закон сохранения энергии формулируется по-разному, в связи с чем говорится о сохранении различных видов энергии. Например, в термодинамике закон сохранения энергии выражается в виде первого начала термодинамики .

Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то более правильным является его именование не законом , а принципом сохранения энергии.

С математической точки зрения закон сохранения энергии эквивалентен утверждению, что система дифференциальных уравнений , описывающая динамику данной физической системы, обладает первым интегралом движения, связанным с

Энегрия - наиболее универсальная величина для описания физических явлений.
Энергия - максимальное количество работы, которое способно совершить тело.
Есть несколько видов энергии. Например, в механике:

Потенциальная энергия тяготения,
определяется высотой h .

- Потенциальная энергия упругой деформации,
определяется величиной деформации х .

- Кинетическая энергия - энергия движения тел,
определяется скоростью тела v .

Энергия может передаваться от одних тел к другим, а также превращаться из одного вида в другой.

- Полная механическая энергия.

Закон сохранения энергии : в замкнутой системе тел полная энергия не изменяется при любых взаимодействиях внутри этой системы тел. Закон накладывает ограничения на протекание процессов в природе. Природа не допускает появление энергии ниоткуда и исчезание в никуда. Возможно оказывается только так: сколько одно тело теряет энергии, столько другое приобретает; сколько убывает одного вида энергии, столько к другому виду прибавляется.
В механике для определения видов энергии необходимо обратить внимание на три величины: высоту подъема тела над Землей h, деформацию х , скорость тела v .